
Introduction to Software Engineering

Submitted by:

Ms. Anshika

Assistant Professor

Computer Science and Engineering ,MAIT

Maharaja Agrasen University

Outline

Software Engineering Definition

Software Characteristics

Role of Software

Principles Of Software Engineering

Software Process

Software Process Models

Software Engineering Definition

Software engineering involves the systematic process of
designing, developing, testing, and maintaining software to
ensure high quality, reliability, and maintainability. It
encompasses various techniques, tools, and methodologies
such as requirements analysis, design, testing, and
maintenance. As a rapidly evolving field, new tools and
technologies are continuously emerging to enhance the
software development process.

Software Characteristics

 Software is intangible, meaning it cannot be seen or physically

touched.

 It is non-perishable, as it does not degrade over time.

 It is easily replicable, allowing for effortless copying and

distribution.

 It can be highly complex, consisting of numerous interrelated

components and features.

 Understanding and modifying software can be challenging,

particularly in large and intricate systems.

 It is influenced by changing requirements, often requiring updates or

modifications to meet evolving user needs.

 Bugs and other issues can impact software, necessitating thorough

testing and debugging to ensure proper functionality.

Role of Software

Core Component : Software is the foundation of applications, systems, and digital solutions.

Automation & Efficiency: It automates processes, improving productivity and reducing
manual effort.

Problem-Solving: Enables users to perform tasks and solve complex problems across various
domains.

Development & Maintenance: Supports designing, coding, testing, and maintaining software
solutions.

Scalability & Security: Ensures systems remain reliable, secure, and adaptable to changing
needs.

Innovation & Evolution: Continuously evolves with new technologies to enhance
capabilities.

Principles Of Software Engineering

Principles of Software Engineering deal with both process of software
Engineering. These principles are helping software engineers make decisions,
solve problems, and manage projects. that provide structure and direction for
developing high-quality software systems.

Here are some of the key principles of software engineering:

1. Separation of Concerns

Time Schedule

Qualities

Views

Size

2.Modularity Principle

Increases maintainability

Reusability

Understandability

Debugged separately

3. Anticipation of Change
Software meet evolve to meet
Changing customer requirement

4. Rigor and Formality

Rigor is defined as accuracy and exactness

Requires the software process to be driven

5. Abstraction Principle

Identifying the important aspects

Concentrate on Solution

6. Principle of Generality

Trying to focus at more general problem

Instead of designing

Methods & Techniques

Principles

Methods &

techniques

Life-cycle

methodologies

Processes &

procedures

Automated

tools

Software Process

The software process refers to a structured set of activities involved in the

development, maintenance, and management of software. It ensures the

systematic production of high-quality, reliable, and maintainable software.

Key Phases of the Software Process:

 Requirement Analysis – Identifying and documenting user needs.

 Design – Creating the architecture and blueprint for software development.

 Implementation (Coding) – Writing the actual program code.

 Testing – Verifying and validating the software to ensure it meets

requirements.

 Deployment – Releasing the software for use in a real-world environment.

 Maintenance – Updating and improving the software over time to fix

bugs and adapt to new requirements.

Software Process Model

A software process model is a structured framework that defines the
approach and sequence of activities involved in software development. It
provides guidelines for planning, designing, implementing, testing, and
maintaining software. Different models are used based on project
requirements, complexity, and development methodology.

Software Process Models:

Waterfall Model – A linear and sequential approach with distinct phases.

Incremental Model – An iterative and incremental approach that
emphasizes flexibility and collaboration.

Spiral Model – A risk-driven model that combines iterative development
with risk assessment.

Waterfall Model

Requirement Analysis – Collect and document system and user
requirements.

System Design – Develop architecture and design specifications.

Implementation (Coding) – Write and develop the actual software.

Testing – Verify and validate that the software meets requirements
and is free of defects.

Deployment – Release the software for real-world use.

Maintenance – Provide updates, bug fixes, and improvements as
needed.

The Waterfall Life-cycle

Systems

Engineering

Design

Code

Test

Maintenance

Req.

Analysis

Integration

Incremental Model

The Incremental Model is a software development approach where the
system is built and delivered in small, manageable increments rather than
as a whole. Each increment adds functionality, making the software
progressively more complete.

Phased Development

Early and Continuous Delivery

Customer Feedback

Flexible and Adaptive

Incremental Life-Cycle

System Implementation
Systems

Eng

Rqmts.

Analysis
Maintenance

Code Test Integrate

Code Test Integrate

Code Test Integrate

Design

Design

Design

Rqmts

Analysis

Rqmts

Analysis

Rqmts

Analysis

Build 1

Build 2

Build 3

Spiral Model

The Spiral Model is a risk-driven software development process that
combines iterative development with systematic risk management. It
focuses on continuous refinement through repeated cycles, allowing for
flexibility and adaptability. Each iteration or phase of the spiral involves
four key activities:

Risk-Driven

Iterative and Incremental

Flexibility and Adaptability

Customer Feedback

1. Planning

Identify objectives, gather requirements, and plan the next phase.

2. Risk Analysis

Assess potential risks, develop mitigation strategies, and make decisions.

3. Engineering (Development & Testing)

Design, implement, and test the software incrementally.

4. Evaluation & Review

Gather user feedback, validate progress, and decide on the next iteration.

Spiral Life-cycle

Determine

objectives,

alternatives,

constraints

Plan next phases

Evaluate alternatives,

identify, resolve risks

Develop, verify

next level product

Risk

Analysis

Risk Mitigation

Concept of

operation

Requirements

analysis
Design

Implementation

and test

Thank you

